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a b s t r a c t

The problem of the conditions for the static equilibrium of a body, resting on a rough plane at one, two or
three points, is considered. It is assumed that an arbitrary system of active forces is applied to the body,
while the friction on the rough supporting plane is anisotropic. This model generalizes the well-known
isotropic model of Coulomb dry friction. Explicit analytic formulae, which express the necessary and
sufficient conditions for static equilibrium, are obtained. The investigation procedure uses the idea of an
anisotropic force of static friction, which enables analytical results for the equilibrium conditions to be
obtained more easily.

© 2009 Elsevier Ltd. All rights reserved.

1. Formulation of the equilibrium problem, description of the model of anisotropic friction and fundamental equations

Suppose Oxyz is a fixed system of coordinates. Consider a rigid body, resting on a plane Oxy at its points: A1, . . ., An. We will denote
the radius vector of the point Ak by rk = (xk, yk, 0)T. Here and everywhere below, unless otherwise stated, k = 1, 2, . . ., n. In Fig. 1 we show
the supporting plane Oxy (as seen from above from the positive direction of the Oz axis), on which we show one point of support Ak. The
reaction of the plane at the point Ak consists of the normal component Nk, directed along the Oz axis, and the tangential component Fk (the
friction force), lying in the Oxy plane. Suppose an arbitrary system of active forces, having a principal vector F = (Fx,Fy,Fz)T and a principal
moment about the point O MO = (Mx, My, Mz)T is applied to the body. It is required to determine the conditions imposed on the quantities
F and MO, the coordinates of the points Ak and the characteristics of the friction at the points Ak, for which the reactions Nk = (0, 0, Nk)T,
Fk = (Fkx, Fky, 0)T are such that the following conditions of static equilibrium of the body are satisfied

(1.1)

Moreover, the conditions that the projection of the normal reaction onto the vertical (Nk ≥ 0) must be non-negative and the corresponding
inequalities for the friction forces at rest Fk for anisotropic dry friction must be satisfied.

Following the well-known approach,1 we will write a model for the anisotropic dry friction which generalizes the usual Coulomb’s law
(isotropic dry friction).

Suppose the contact point Ak has acquired a velocity �k in the Oxy plane, directed at an angle � to the positive Ox axis (Fig. 1). Then the
anisotropic slip friction force is given by the formula

(1.2)

where�O = ||fij|| is a 2 × 2 matrix of the friction tensor, assumed positive definite, since the power of the force Ffr for any velocity � must
be negative, i.e., (�T�O�) > 0. Consequently, it is necessary for the conditions f11 > 0, f22 > 0,�= f11f22 − f12f21 > 0 to be satisfied.

Note that the necessary and sufficient conditions for the matrix�O to be positive definite are the inequalities

which are identical with those derived only when f12 = f21.
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Fig. 1.

For the classical law of isotropic dry friction (Coulomb’s law) we have �O = fE, where E is the unit matrix and f is the coefficient of
friction. Projecting the vector inequality (1.2) onto the Ox and Oy axis, we obtain

(1.3)

Formula (1.2) for the anisotropic friction force for motion (for initial motion) implies the presence of a corresponding anisotropic force
of static friction Fk which is determined using the following principle.

The static friction force Fk, directed at an angle � to the positive Ox axis, does not exceed in modulus the modulus of the possible force
of kinetic friction, which is also directed at an angle � to the Ox axis. Clearly, the corresponding possible initial slip point Ak occurs at an
angle � to the Ox axis, which is determined using formula (1.3) and the equalities

(1.4)

We then obtain

(1.5)

Substituting expression (1.5) into relations (1.3), we have

Then, taking the last equality, the principle formulated above and relations (1.4) into account, we obtain the following inequalities for
the components of the static friction forces Fk

(1.6)

In exactly the same way we can determine the conditions for the static friction forces and for other laws of anisotropic sliding friction,
which were presented previously in Ref. 2.

If the friction is orthotropic, i.e., the Ox and Oy axes are the principal directions of the matrix �O, we have f12 = f21 = 0 and limit (1.6)
takes the form

i.e., it is a friction ellipse. If the friction is isotropic (Coulomb’s law), we have f11 = f22 = f, and we obtain a friction circle.
Thus, the problem in question is formulated as follows. It is required to determine the conditions, imposed on the quantities Fx, Fy, Fz, Mx,

My, Mz, (xk, yk) and the coefficients of friction fij (i, j = 1, 2), for which reactions Nk = (0, 0, Nk)T, Fk = (Fks, Fky, 0)T exist such that the equilibrium
equations (1.1) are satisfied and inequalities (1.6) and Nk ≥ 0 are also satisfied, i.e., the reaction forces of the plane are admissible.

In this paper we will consider the cases n = 1, n = 2 and n = 3, i.e., the number of support points does not exceed three. These cases are
statically definite for normal reactions and can be considered within the framework of the model of an absolutely rigid body. The case n > 3
was considered previously in Refs 3 and 4; in particular, the conditions of guaranteed equilibrium were investigated. It was shown3 that the
conditions of guaranteed equilibrium (for n > 3) reduce to investigating the equilibrium problem for support at any three of the specified
n support points. Hence, the case n = 3 is decisive when investigating problems of the guaranteed equilibrium of a body with an arbitrary
number of support points within the framework of the model of an absolutely rigid body.

Note that the problem considered in this paper is only concerned with finding the conditions for which equilibrium can be obtained.
Problems of the stability of these equilibria are not considered here. These problems require the use of the dynamic equations of motion of
a rigid body on a rough plane, and have been investigated in certain cases in Ref. 5.

2. Formulation and justification of the results in the case when n = 1

Suppose A1 is the only point of support. Without loss of generality we will assume that it coincides with the origin of coordinates O, i.e.,
x1 = y1 = 0. Equilibrium equations (1.1) then reduce to the following

(2.1)
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Inequality (1.6) for the admissible reaction forces when k = 1 has the form

(2.2)

We immediately obtain the following result from relations (2.1) and (2.2).

Assertion 1. For the static equilibrium of the body, supported at a single point A1 on a plane with anisotropic dry friction, characterized
by the 2 × 2 matrix�O = ||fij||, it is necessary and sufficient for the following conditions to be satisfied

(2.3)

whereMA1 is the principal moment of the active forces about the point A1 and F = (Fx, Fy, Fz)T is the principal vector of the active forces.

Corollary. In the case of isotropic dry friction F12 = F21 = 0, F11 = F22 = f, and conditions (2.3) have the form

i.e., we obtain the usual Coulomb cone of friction.

Example. A heavy point of mass m rests on a rough anisotropic inclined plane. Suppose �0 is the slope of the plane to the horizon and
the system of coordinates Oxyz, in which the friction matrix�O is specified, is such that the Ox axis is normal to the plane and the Ox axis
makes an angle of �0 with the straight line of greatest slope. Then

and the equilibrium condition has the form

In particular, for isotropic dry friction this condition takes the well-known form tg�0 ≤ f, where f is the coefficient of friction.
A special case of this problem was investigated in Ref. 6, namely, the beginning of motion of a point mass along a plane with orthotropic

friction (f12 = f21 = 0). The beginning of the motion is the first instant when the point leaves the state of static equilibrium. Violation of the
last inequality in (2.3) also denotes the possibility of the beginning of motion of a point mass under the action of an active force F, since the
first two conditions are necessarily satisfied (when Fz < 0).

Hence, for orthotropic friction breakdown of equilibrium of the point occurs when

If the value of Fz is fixed, the minimum force acting in the Oxy plane at an angle � to the Ox axis and which disturbs the equilibrium of
the point is given by the formula

This result was obtained in Ref. 6 by the limit equilibrium method, which goes back to Coulomb, Jellett and Zhukovskii and other classics
of theoretical mechanics. The method is based on the assumption that the point begins to move from a state of rest (equilibrium). As a
result of this assumption, the modulus and direction of the friction force become known, in accordance with formulae (1.3) and (1.4). One
can then derive the conditions which the force F must satisfy in order that this motion can take place for any angle �, which the vector of
the velocity of possible slippage makes with the positive Ox axis. Non-satisfaction of these conditions for all angles � leads to conditions of
equilibrium. Strict application of this method for the problem being considered here is extremely lengthy and will not be done here.

3. Formulation and justification of the results for the case when n = 2

Suppose A1 and A2 are two points of support of the body on the plane, and A1 coincides with the origin of coordinates while point A2
has coordinates x2 = acos�, y2 = asin�, where a is the length of the section A1A2 and � is the angle which the vector

−−−→
A1A2 makes with the

positive Ox axis (Fig. 2). In Fig. 2 we also show the vector Fxy, which is the projection of the principal vector F on the Oxy plane and �0 is
the angle which the vector Fxy makes with the vector

−−−→
A1A2. All the angles are measured in an anticlockwise direction.

In this case equilibrium equations (1.1) have the form

(3.1)

(3.2)

The first two equations of system (3.2) impose the following constrain on Mx and My

(3.3)

which denotes that there are no conditions which ensure rotation of the body about the A1A2 axis. Consequently, we obtain the following
expressions for the normal reactions from Eqs (3.1) and (3.2)

(3.4)
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Fig. 2.

Hence, here the normal reactions, in a state of static equilibrium, depend only on the specified active forces, their moments and the
geometrical parameters. Hence, we will henceforth assume that N1 and N2 are specified positive quantities defined by formulae (3.4),
where N2 ≥ N1, which does not violate the generality of the discussion. To solve the problem of the equilibrium conditions it is necessary,
using equilibrium equations (3.1) and (3.2), to satisfy inequalities (1.6) with k = 1, 2 for static friction forces.

We will introduce the following notation

(3.5)

The following assertions hold.

Assertion 2. For static equilibrium of a rigid body, supported at two points on a rough surface with anisotropic dry friction, described by
�O, it is necessary and sufficient to satisfy condition (3.3), inequalities (3.4) and also the inequalities

(3.6)

The quantities �1, �2, m, F01, F02 are defined by formulae (3.5).

Assertion 3.

1◦. If F2
00 > (�1 + �2)2, inequalities (3.6) have no solutions and static equilibrium is impossible.

2◦. If F2
00 > (�1 + �2)2, static equilibrium is only possible if m ∈ [m1, m2], where m1 and m2 are calculated according to the following rules

(we recall that �2 ≥ �1, since, by definition, N2 ≥ N1).

Suppose F01 > 0 (i.e., sin�0 > 0). Then

1) if F2
00 ≥ �2

2 − �2
1 + 2�1F01, then

(3.7)

2) if �2
1 − �2

2 + 2�2F01 ≤ F2
00 < �

2
2 − �2

1 + 2�1F01, then m1 = F01 − �1, and m2 is given by formulae (3.7), where we take the plus sign;
3) if 0 ≤ F2

00 < �
2
1 − �2

2 + 2�2F01, then

Suppose F01 < 0 (i.e., sin�0 < 0). Then
4) if F2

00 ≥ �2
2 − �2

j
− 2�1F01, then m1 and m2 are given by formulae (3.7);

5) if �2
1 − �2

2 − 2�2F01 ≤ F2
00 < �

2
2 − �2

1 − 2�1F01, then m2 = F01 + �1, and m1 is given by formulae (3.7), where we take the minus sign;
6) if 0 ≤ F2

00 < �
2
1 − �2

2 − 2�2F0, then
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Proof of Assertion 2. Without loss of generality we will assume that cos� > 0. We put x = F2x. Then, we obtain from Eqs (3.1) and (3.2)

Substituting these expressions into inequalities (1.6) (k = 1, 2) and using notation (3.5), we obtain the following inequalities, quadratic
in x

(3.8)

(3.9)

where

and the remaining parameters are defined by formulae (3.5).
In order for equilibrium to be possible it is necessary and sufficient that inequalities (3.7) and (3.9) should have at least one common real

solution x. Since the coefficient of x2 in the expressions for Q1 and Q2 is positive, for this to be true it is necessary, first, that the quadratic
trinomials Q1(x) and Q2(x) have only real roots x2 < x1 for Q1(x) and x4 < x3 for Q2(x), and second, that the segments [x2, x1] and [x4, x3]
should have a non-empty intersection, i.e., the following two inequalities must be satisfied simultaneously

(3.10)

Algebraic calculations, which we omit here, give the following expressions for the roots x1, . . ., x4, according to relations (3.8) and (3.9)

(3.11)

where

Using formulae (3.11) it can be established that inequalities (3.10) and the conditions for the roots of the functions Q1(x) and Q2(x) to
be real are equivalent to the inequalities

which, after simple reduction and using notation (3.5), lead to relations (3.6).

Proof of Assertion 3. Consider the function

An investigation of this function shows that  ′′
m2 < 0, i.e., its graph is convex upwards, and it has a maximum at the point

provided |F01| < �1 + �2. But this inequality must necessarily be satisfied since only then can solutions of the first two inequalities (3.6) exist.
In fact, we have from inequalities (3.6)

In order that these integrals should have a non-empty intersection, it is necessary and sufficient for the following conditions to be
satisfied

Hence, the point m = m* belongs to the region in which the function �(m) is defined, namely,

We will investigate the roots of the equation �(m) = F02. It is clear that when
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the equation has no roots, i.e., when

there are no solutions of inequalities (3.6), and equilibrium is impossible. The remaining part of Assertion 3 is proved by a direct check (this
can be done most easily graphically).

Remark. For isotropic friction�0 = fE, and inequalities (3.6), from Assertion 2, have the form

and Assertion 3 gives the result obtained previously in Ref. 7 by the limit equilibrium method.

Example. We will use the results of Assertion 3 for the case when N1 = N2 = N0. Then �1 = �2 = �0 = N0�(�) (see notation (3.5)). We will
assume that F01 > 0, i.e., sin�0 > 0. Putting

we will have

By Assertion 3 only cases 1 or 3 are realized for equilibrium.
We will put

We then obtain the following result:

1) when F0 > F11 equilibrium is impossible;
2) when F0 ∈ [F12,F11] equilibrium is only possible when m ∈ [m1,m2];

3) when 0 ≤ F < F12 equilibrium is only possible when

It can be seen from these expressions that the boundary of the region of equilibrium in the plane of the parameters F0,m for fixed �0 and
� consists of sections of straight lines and arcs of ellipses. We will illustrate this boundary for the principal moment mc about the centre
of the section A1A2. It is clear that

We then obtain

In Fig. 3 we show the symmetrical region of equilibrium obtained in the plane of the parameters F0, mc for fixed values of the parameters
�0 and �. When the parameters �0 and � change the region of equilibrium also changes. Assuming that the friction is orthotropic, i.e.,
f12 = f21 = 0, we will consider the two simplest cases.

The case when �0 = 0. Then F12 = 0, i.e., the boundaries of the regions of equilibrium when � ∈ (0, 	/2) consists solely of arcs of ellipses
(the left side of Fig. 4) with semiaxes

It can be seen that the lengths of the semiaxes of the ellipses depend considerably on the angle � – the slope of the section A1A2 to the
Ox axis, where the length of one of the semiaxes increases monotonically, while the length of the other decreases as the angle � changes.
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Fig. 3.

Fig. 4.

The case when �0 = 	/2. Then

Here the regions of equilibrium for different � consist of sections of straight lines and arcs of ellipses smoothly joined to them (the right
side of Fig. 4), and, since F11 and �0 are simultaneously monotonically decreasing or increasing functions of the angle �, these regions are
imbedded in one another.

Note that the regions of equilibrium represented in Fig. 4 differ considerably from the analogous regions of equilibrium obtained
previously (Ref. 1, p.227).

4. Formulation and justification of the results for the case when n = 3

Suppose Aj(xj,yj) (j = 1, 2, 3) is a support point (Fig. 5). The origin of coordinates O coincides with the point A1. The anisotropic friction
is specified by the positive definite 2 × 2 matrix�0 = ||fij|| of the supporting rough plane in the Oxy axes.

We will assume that non-negative normal reactions Nj are specified at the support points Aj, which are found from equilibrium equations
(1.1) and depend only on the external specified forces, their moments and geometrical parameters of the body. Suppose Fj are the static
friction forces at the points Aj. Then the equilibrium equations have the form

(4.1)

with constraints (1.6) for the static friction forces.
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Fig. 5.

We introduce the matrix�1 and the variables uj, �j(j = 1, 2, 3), P1, P2 using the formulae

Using the above notation and formulae (4.1) for the principal moment Mz we obtain the expression

(4.2)

where

Constrains (1.6) take the form

(4.3)

(4.4)

The problem now is to determine the extrema of the function � (4.2) with constraints (4.3) and (4.4). Solving this problem we obtain
the condition for static equilibrium to be possible in terms of the parameters Mz, P1, P2, 
2, 
3, a2, b2, a3, b3 which are also easy to formulate
for the initial parameters Fx, Fy, x2, y2, x3, y3.

Suppose Q1 and Q2, Q3, are sets (convex) in the four-dimensional space {u2,�2, u3,�3}, defined by inequalities (4.3) and (4.4) respectively.
Then, in view of the linearity of the function �, its maximum and minimum are only reached on the boundary of intersection of the sets
Q1, Q2 and Q3. Hence, the search for an extremum consists of inspecting all the versions of the boundaries of intersection of these sets. We
will consider these possible cases.

Case 1. Suppose the set D1 = Q1 ∩ Q2 ∩ Q3 is non-empty. We will investigate the values of the function� on its boundary.

The following assertion holds.

Assertion 4.

1◦. The set �1 of points of the boundary of the set D1, at which inequalities (4.3) and (4.4) become equalities, is non-empty if and only if

(4.5)

where

2◦. The function� (4.2) in the set �1 is given by the formula

(4.6)
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where

(4.7)

and the parameter � varies so that

(when inclusion (4.5) is satisfied the set of variations of the parameter � is non-empty!)

Hence, the initial problem of an extremum here reduces to investigating the roots of the equation d�/d� = 0, the function�(�) is given
by formulae (4.6) and (4.7), while the parameter � varies within the limits indicated.

The proof consists of solving Eqs. (4.2) and (4.3), (4.4) simultaneously (where the inequalities are replaced by equalities). Suppose u2 = 
2
cos�, �2 = 
2 sin�. Then the first equality of (4.4) is satisfied. From the remaining three equalities we have

(4.8)

(4.9)

The quantity h0 is defined by the last formula of (4.7).
We solve the linear system (4.8) for u3 and v3 and substitute the results into Eq. (4.9). We obtain the following quadratic equation in

�1 =�− 
2(a2cos� + b2sin�)

(4.10)

The quantities q1, q2, q3 and z are defined by (4.7). Using the identity

we obtain expressions (4.6) from Eq. (4.10).
The correctness of the first part of Assertion 4 follows from the condition for the radicand in (4.6) to be positive.
In fact

Consequently,

Moreover, by the penultimate equality of (4.7)

which leads to inclusion (4.5).

Case 2. We will investigate the function� on the boundary of the set D2 = Qi ∩ Qj (i /= j), where the points of this boundary must belong
to the interior of the set Qk (k /= i, k /= j). If the function � has local-extremum points in this set, these points are also global extrema by
virtue of its linearity.

Assertion 5. Consider the boundary �2 of the set D2 = Q2 ∩ Q3, i.e., inequalities (4.4) become equalities. Then the function � has a local
extremum on �2, which is an internal point of the set Q1 solely when

(4.11)
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where the plus sign is taken for a maximum point and a minus sign is taken for a minimum point, A23 is the angle between the vectors
d2 = (a2, b2) and d3 = (a3, b3), and �2 and �3 are the angles which the vector P = (P1, P2) makes with the vectors d2 and d3.

Proof. The boundary �2 is given by the formulae

Then the extremum points of the function� from (4.2) are specified by the equalities

Substituting these expressions into inequality (4.3), we obtain inequality (4.11).

Inequalities similar to (4.11) are obtained for the sets Q1 ∩ Q3 and Q1 ∩ Q2 by cyclic permutation of the subscripts.

Case 3. The set Q1 ∩ Q2 ∩ Q3 is empty, i.e. equilibrium is certainly impossible.

Assertion 6. Inequalities (4.3)–(4.5) have no solutions if and only if

(4.12)

Proof. It is clear that inequalities (4.3) and (4.4) have no common solution if and only if

under conditions (4.4). Using, for example, the method of Lagrange undetermined multipliers, we can obtain that

Hence, if P > 
2 + 
3, inequalities (4.3) and (4.4) are incompatible when condition (4.12) is satisfied.

Case 4. The set Q1 contains an intersection of the sets Q2 and Q3, i.e., Q1 ⊃ [Q2 ∩ Q3]. Other possible similar situations are obtained cyclically
by permutation of the subscripts.

Assertion 7. Suppose that, among the numbers

(4.13)

there is one positive number, for example, the first of them (there cannot, obviously, be two positive numbers when 
j > 0, j = 1, 2, 3). Then,
if 0 ≤ P < 
1 − 
2 − 
3 we have Q1 ⊃ [Q2 ∩ Q3], and the extremum of � is calculated in the same way as in Assertion 5 (the extremum point
necessarily belongs to the interior of the set Q1). Other possible situations are obtained by cyclic permutation of the subscripts.

Proof. It is clear that the inclusion Q1 ⊃ [Q2 ∩ Q3] is only satisfied when

for conditions (4.4). The values of� can be calculated, for example, by the method of Lagrange undetermined multipliers. We have

Example. We will consider the application of the results obtained to the case when Fx = Fy = 0. Then, P1 = P2 = P = 0.

We must distinguish two cases.

1◦. The quantities 
1, 
2, 
3 do not satisfy the triangle inequalities. Then among the numbers (4.13) there is one positive number and we
can use the result of Assertion 7. Suppose, for example, that 
1 − 
2 − 
3 > 0. Then

The remaining possible situations are obtained by cyclic permutation of the subscripts. For example, if 
2 − 
1 − 
3 > 0, we have

2◦. The quantities 
1, 
2, 
3 satisfy the triangle inequalities. Then, all the numbers (4.13) are negative, and Assertions 4 and 5 can be used.
We must distinguish two cases here. If inequality (4.11) is satisfied (or an inequality similar to it by cyclic permutation of the subscripts),
an extremum of the function� can be found in the same way as in Assertion 7 (with appropriate cyclic permutation of the subscripts). If
inequalities (4.11) are not satisfied, i.e.,
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(Aij is the angle between the vectors di and dj, (1 2 3) denotes cyclic permutation of the subscripts) we must use Assertion 4, which in
this case reduces the search for an extremum to an investigation of the function

(4.14)

where

It is clear that |h0| < 
3, since this inequality reduces to inequalities for a triangle with sides 
1, 
2, 
3. Hence, the function�(�) (4.14) is
correctly defined over the whole section � ∈ [0, 2	]. The extrema of the function�(�) are given by the formulae

Using Heron’s formula for a triangle with sides 
1, 
2, 
3 and the fact that |b2a3 − b3a2| = 2Sab, where Sav is the area of the triangle formed
by the vectors d2 = (a2, b2) and d3 = (a3,b3), we obtain the following result

where S is the area of the triangle with sides 
1, 
2, 
3.

Remarks. The results obtained depend very much on the orientation of the triangle A1A2A3 and of the principal vector Fxy with respect
to the axes of coordinates Oxy, since the matrix of anisotropic friction�0 depends on the choice of the system of coordinates Oxy. The Ox
and Oy axes can be directed along the principal axes of the matrix �0, and if they are mutually perpendicular we will have orthotropic
friction, and the equilibrium condition will also depend both on the orientation of the triangle A1A2A3 and on the vector Fxy with respect
to these principal axes.

Similar results were obtained in Ref. 7 for isotropic friction by the limit equilibrium method. The problem of guaranteed equilibrium on
a plane with orthotropic friction was considered in Ref. 4 for an arbitrary number of support points.
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